Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255912

RESUMO

Mass photometry (MP) is a fast and simple analysis method for the determination of the proportions of subpopulations in an AAV sample. It is label-free and requires minimal sample volumes between 5-10 µL, which makes it a promising candidate over orthogonal techniques such as analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (Cryo-TEM) or charge-detection mass spectrometry (CDMS). However, these methods are limited in their application to purified samples only. Here we developed a purification step based on single-domain monospecific antibody fragments immobilised on either a poly(styrene-divinylbenzene) resin or on magnetic beads prior to MP analysis that allows the quantification of empty, partially filled, full and overfull AAV vectors in crude cell extracts. This is aimed at identifying potentially promising harvest conditions that yield large numbers of filled AAV vectors during the early stages of the viral vector development platform, e.g., the type of transfection reagent used. Furthermore, we provide a direct comparison of the automated and manual handling of the mass photometer with respect to the quantities of AAV subspecies, molar mass of the capsid and payload, and highlight the differences between the "buffer-free" sample measurement and the "buffer-dilution" mode. In addition, we provide information on which candidates to use for calibration and demonstrate the limitations of the mass photometer with respect to the estimation of the capsid titer.


Assuntos
Dependovirus , Anticorpos de Domínio Único , Extratos Celulares , Dependovirus/genética , Biotecnologia , Calibragem , Proteínas do Capsídeo , Fotometria
2.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446211

RESUMO

Adeno-associated viruses (AAV) are one of the most commonly used vehicles in gene therapies for the treatment of rare diseases. During the AAV manufacturing process, particles with little or no genetic material are co-produced alongside the desired AAV capsid containing the transgene of interest. Because of the potential adverse health effects of these byproducts, they are considered impurities and need to be monitored carefully. To date, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM) and charge-detection mass spectrometry (CDMS) are used to quantify these subspecies. However, they are associated with long turnaround times, low sample throughput and complex data analysis. Mass photometry (MP) is a fast and label-free orthogonal technique which is applicable to multiple serotypes without the adaption of method parameters. Furthermore, it can be operated with capsid titers as low as 8 × 1010 cp mL-1 with a CV < 5% using just 10 µL total sample volume. Here we demonstrate that mass photometry can be used as an orthogonal method to AUC to accurately quantify the proportions of empty, partially filled, full and overfull particles in AAV samples, especially in cases where ion-exchange chromatography yields no separation of the populations. In addition, it can be used to confirm the molar mass of the packaged genomic material in filled AAV particles.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Dependovirus/química , Vetores Genéticos/genética , Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Eletrônica de Transmissão
3.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361506

RESUMO

Ion-exchange chromatography coupled to light scattering detectors represents a fast and simple analytical method for the assessment of multiple critical quality attributes (CQA) in one single measurement. The determination of CQAs play a crucial role in Adeno-Associated Virus (AAV)-based gene therapies and their applications in humans. Today, several different analytical techniques, including size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), qPCR or ELISA, are commonly used to characterize the gene therapy product regarding capsid titer, packaging efficiency, vector genome integrity, aggregation content and other process-related impurities. However, no universal method for the simultaneous determination of multiple CQAs is currently available. Here, we present a novel robust ion-exchange chromatography method coupled to multi-angle light scattering detectors (IEC-MALS) for the comprehensive characterization of empty and filled AAVs concerning capsid titer, full-to-total ratio, absolute molar mass of the protein and nucleic acid, and the size and polydispersity without baseline-separation of both species prior to data analysis. We demonstrate that the developed IEC-MALS assay is applicable to different serotypes and can be used as an orthogonal method to other established analytical techniques.


Assuntos
Proteínas do Capsídeo , Dependovirus , Humanos , Dependovirus/genética , Cromatografia por Troca Iônica/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia em Gel , Proteínas do Capsídeo/genética , Vetores Genéticos/genética , Luz
4.
Biotechnol Bioeng ; 116(6): 1259-1268, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659592

RESUMO

Sugar nucleotide-dependent (Leloir) glycosyltransferases from plants are important catalysts for the glycosylation of small molecules and natural products. Limitations on their applicability for biocatalytic synthesis arise because of low protein expression (≤10 mg/L culture) in standard microbial hosts. Here, we showed two representative glycosyltransferases: sucrose synthase from soybean and UGT71A15 from apple. A synthetic biology-based strategy of decoupling the enzyme expression from the Escherichia coli BL21(DE3) cell growth was effective in enhancing their individual (approximately fivefold) or combined (approximately twofold) production as correctly folded, biologically active proteins. The approach entails a synthetic host cell, which is able to shut down the production of host messenger RNA by inhibition of the E. coli RNA polymerase. Overexpression of the enzyme(s) of interest is induced by the orthogonal T7 RNA polymerase. Shutting down of the host RNA polymerase is achieved by l-arabinose-inducible expression of the T7 phage-derived Gp2 protein from a genome-integrated site. The glycosyltransferase genes are encoded on conventional pET-based expression plasmids that allow T7 RNA polymerase-driven inducible expression by isopropyl-ß- d-galactoside. Laboratory batch and scaled-up (20 L) fed-batch bioreactor cultivations demonstrated improvements in an overall yield of active enzyme by up to 12-fold as a result of production under growth-decoupled conditions. In batch culture, sucrose synthase and UGT71A15 were obtained, respectively, at 115 and 2.30 U/g cell dry weight, corresponding to ∼5 and ∼1% of total intracellular protein. Fed-batch production gave sucrose synthase in a yield of 2,300 U/L of culture (830 mg protein/L). Analyzing the isolated glycosyltransferase, we showed that the improvement in the enzyme production was due to the enhancement of both yield (5.3-fold) and quality (2.3-fold) of the soluble sucrose synthase. Enzyme preparation from the decoupled production comprised an increased portion (61% compared with 26%) of the active sucrose synthase homotetramer. In summary, therefore, we showed that the expression in growth-arrested E. coli is promising for recombinant production of plant Leloir glycosyltransferases.


Assuntos
Escherichia coli , Glicosiltransferases , Proteínas Recombinantes , Proteínas de Soja , Biologia Sintética/métodos , Reatores Biológicos/microbiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Soja/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo
5.
Biotechnol Bioeng ; 115(3): 545-556, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29131308

RESUMO

Glycosyltransferase cascades are promising tools of biocatalysis for natural product glycosylation, but their suitability for actual production remains to be shown. Here, we demonstrate at a scale of 100 g isolated product the integrated biocatalytic production of nothofagin, the natural 3'-C-ß-D-glucoside of the polyphenol phloretin. A parallel reaction cascade involving coupled C-glucosyltransferase and sucrose synthase was optimized for the one-pot glucosylation of phloretin from sucrose via an UDP/UDP-glucose shuttle. Inclusion complexation with the highly water soluble 2-hydroxypropyl-ß-cyclodextrin pushed the phloretin solubility to its upper practical limit (∼120 mM) and so removed the main bottleneck on an efficient synthesis of nothofagin. The biotransformation thus intensified had excellent performance metrics of 97% yield and ∼50 gproduct /L at a space-time yield of 3 g/L/hr. The UDP-glucose was regenerated up to ∼220 times. A scalable downstream process for efficient recovery of nothofagin (≥95% purity; ≥65% yield) was developed. A tailored anion-exchange chromatography at pH 8.5 was used for capture and initial purification of the product. Recycling of the 2-hydroxypropyl-ß-cyclodextrin would also be possible at this step. Product precipitation at a lowered pH of 6.0 and re-dissolution in acetone effectively replaced desalting by size exclusion chromatography in the final step of nothofagin purification. This study therefore, reveals the potential for process intensification in the glycosylation of polyphenol acceptors by glycosyltransferase cascades. It demonstrates that, with up- and downstream processing carefully optimized and suitably interconnected, a powerful biocatalytic technology becomes available for the production of an important class of glycosides difficult to prepare otherwise.


Assuntos
Chalconas/química , Glucosiltransferases/química , Polifenóis/química , Proteínas de Soja/química , Biocatálise , Glucosiltransferases/genética , Proteínas de Soja/genética , /genética
6.
Biotechnol Bioeng ; 114(4): 924-928, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27775150

RESUMO

Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc.


Assuntos
Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Uridina Difosfato Glucose/análise , Uridina Difosfato Glucose/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Glicosilação , Nucleotídeos , Proteínas Recombinantes/metabolismo
7.
Protein Expr Purif ; 108: 80-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25514202

RESUMO

Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Células CHO , Cricetulus , Proteínas Recombinantes de Fusão/química
8.
J Immunol Methods ; 393(1-2): 81-5, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23612045

RESUMO

The expanding use of monoclonal antibodies in the biopharmaceuticals industry has brought the need for new analytical tools. We have developed a coupled affinity and gel-filtration high-performance liquid chromatography method to simultaneously analyze titer and quality of monoclonal antibodies. Before this assay, available analytical methods for protein aggregation required highly purified proteins. This assay can qualitatively describe a protein from a clarified cell culture solution by trending protein aggregation over time while measuring protein titer. It can be used to assess proteins in both early- and late-stage culture due to its dynamic range and sensitivity. This assay is a sensitive technique that overcomes the time limitations of previous approaches. It provides an essential tool to accomplish process optimization.


Assuntos
Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Anticorpos Monoclonais/análise , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...